Unit 6: Practical Skills in Physics II - Mark scheme

Question number	Answer	Mark
1(a)	- 2.860 (1)	1
1(b)	- 2.858 cm (four sig figs. Allow ecf from (a)) (1)	1
1(c)	- Use of $V=\frac{4 \pi r^{3}}{3}$ - Use of $\rho=\frac{m}{V}$ - Density $=8.020 \mathrm{~g} \mathrm{~cm}^{-3}$ must be to 4 SF allow ecf from (b) Example of calculation $\begin{aligned} & V=\frac{4 \pi 1.429^{3} \mathrm{~cm}^{3}}{3}=12.223 \mathrm{~cm}^{3} \\ & \rho=\frac{98.00 \mathrm{~g}}{12.223 \mathrm{~cm}^{3}}=8.018 \mathrm{~g} \mathrm{~cm}^{-3} \end{aligned}$	3
1(d)	- Calculates \% uncertainty in diameter from (b) - $\%$ uncertainty in density $=0.4$ (accept 0.42 or 0.37 if halfrange is used) Example of calculation Uncertainty in diameter $=2.858-2.854=0.004$ $\%$ uncertainty in diameter $=0.004 / 2.858 \times 100=0.14 \%$ $\%$ uncertainty in volume and density $=3 \times 0.14=0.42$	2
	Total for Question 1	7

Question number	Answer	Mark
2(a)	- metre rule shown vertical with set square on floor (1)	1
2(b)(i)	- The resolution of the stopwatch is 0.01 seconds - But there is a human reaction time when starting and stopping the stopwatch	2
2(b)(ii)	$\begin{equation*} \bullet \mathrm{v}=0.59 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & v=\frac{2 h}{t}=2 \times 0.885 / 3.0 \\ & \mathrm{v}=0.59 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1
2(b)(iii)	- Calculates value of momentum Example of calculation $\begin{equation*} \mathrm{P}=0.96 \mathrm{~kg} \times 0.59 \mathrm{~m} \mathrm{~s}^{-1}=0.57 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{equation*}$	1
2(c)(i)	- Momentum $=0.88 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ Example of calculation $\begin{aligned} & \Delta \mathrm{p}=0.030 \times 9.81 \times 3.0 \\ & =0.88 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1
2(c)(ii)	- External forces acting Or friction acting	1
	Total for Question 2	7

Question number	Answer	Mark
3(a)	- Circuit showing power supply unit (psu), heater, ammeter in series and voltmeter in parallel with heater - Measure the p.d., current and mass of block (and heater) - Measure initial and final temperature and corresponding time interval - Use of $E=V I t$ - Use of $c=\Delta E / m \Delta \theta$ Example of circuit	5
3(b)	- Not all energy from the heater is supplied to the block Or some energy transferred to/from surroundings - energy transfer to cancels/equals energy transfer from the surroundings (by using same temperature difference below/above surroundings)	2
	Total for Question 3	7

Question number	Answer	Mark
4(a)(i)	- 3.5 mm should have the same number of SF as other values in column - There are no repeat readings	2
4(a)(ii)	Any two from - Distance between coils - Potential difference (across first coil) power supply - Frequency of ac supply	2
4(a)(iii)	- 0.01 V	1
4(a)(iv)	- Because the final digit fluctuates (1)	1
4(a)(v)	- Would need to take some repeat readings - Consider how close together in value	2
4(b)	- There is a value of V when $t=0$	1
4(c)	- Plot $\ln V$ against t - Should be a straight-line graph if the relationship is exponential	2
	Total for Question 4	11

